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abandonment of fields, and changes in land use and
settlement patterns, all of which coincided with a cluster
of severe climatic events.

In order to evaluate the significance of landscape
transformation during the transition from the Aztec to the
Spanish Colonial era, it is necessary to examine previous
cultural periods and evaluate their environmental impact
through the study of both settlement history and the soil
and alluvial stratigraphy. In doing so, two more ecological
crisis were detected, one of which occurred in the Terminal
Formative, between 200 B.C. and A.D. 100, and that
coincides with a peak in upland colonization by farmers.
The second ecological crisis is datable to the transition
from the Classic to the Postclassic, between ca. A.D. 600
and 1000, and coincides with social instability as well as
an increased magnitude of rainfall.

For all three ecological crises, the basic causes of
soil erosion and subsequent accelerated alluviation of
valleys were radical changes in settlement pattern and land
use, coincident with rainfall perturbations that provided a

natural catalyst.
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CHAPTER 1
IRTRODUCTION

This dissertation investigates the issue of
landscape modification associated with human settlement in
the Basin of Mexico, emphasizing the topics of soil erosion
and alluviation, and to a lesser degree vegetation
disturbance and soil structure modification. I selected
the Texcoco Region as the area to study landscape
transformation because it is part of the Basin of Mexico
(Figure 1.1), a cultural area that at the time of the
Spanish Conquest had the densest population, the most
highly differentiated urban centers, and the most complex
political and economic organization in the history of
Mesoamerican civilization (Sanders, et al. 1979: 1,2).
Furthermore, the Texcoco Region offered several advantages
to achieve the research objectives of a study on
environment and settlement history, for it has a wealth of
archaeological data recorded through systematic survey.

The archaeological surveys of the area include the Texcoco
Region (Parsons 1971), few stretches of the Ixtapalapa
Region Survey (Blanton 1972) and the southern end of the
Teotihuacan Valley Survey (Sanders et al., 1975, and Evans

1980). The visibility of sedimentary sequences and the
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1 Map of the Basin of Mexico showing the location of the
study area. Contours every 250 meters.
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availability of historical documents, were also two
important elements taken into account for choosing Texcoco
for investigation. It is worth stressing that even though
this study focuses on the Basin of Mexico, it also provides
suggestive arguments for landscape transformation in the
Mexican highlands, as well as those area of Mesoamerica
that had high levels of population in pre-Hispanic times.
It also provides arguments on universal problems such as
soil erosion and rapid alluvial sedimentation as a result
of land use and settlement pattern changes.

Although this research focuses on the transition
from the Aztec to the Early Colonial landscapes, it also
considers the transformation of the pre-Aztec landscapes,
since the information recovered showed that there were
important stages of landscape change during the incremental
development of agricultural communities. In particular the
early phases of sedentary occupation seem to be relevant to
explain the transition from the pre-Hispanic into the
Spanish land use system.

The relative ecological impact of indigenous and
Colonial land use has been a matter of much discussion on
the occasion of the Columbian Quincentenary. Controversy
arose as to whether native American peoples did or did not

alter or degrade the environment; and whether or not
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European settlers had an immediate and drastically negative
impact on the environment (Butzer and Butzer 1993, 1995).

One of the fundamental questions is what Denevan
(1992) calls the myth of the pristine New World landscape,
or the idea of a non-disturbed pre-Columbian landscape
where people lived in harmony with nature. The pristine
myth can be criticized in the light of substantial ewvidence
that the landscapes of the New World were humanized, in
many instances, modified and even degraded prior to 1492.
For central Mexico diverse and extensive agricultural
landforms were observed by early Spanish writers; these
include hillside terracing, chinampas, and ridged fields
that either remain visible in the landscape or have been
verified by archaeological work (Whitmore and Turner 1992).
Prehispanic land-use had its ecological repercussions, as
recently examined in detail for the Lake Patzcuaro Basin,
where three periods of regional soil erosion can be
verified between 4000 B.P. and the first arrival of the
Spaniards during the 1520s (O'Hara et al. 1993; Butzer
1993).

It must also be emphasized that the Spanish
colonization of the New World had a major impact, through
the introduction of new forms of land use and new biota, as
well as epidemic disease. The resulting Indian

depopulation and land use changes led to significant
4
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transformation of prehispanic landscapes (Butzer 1992c,
Turner and Butzer 1992). To what degree and at what time
the Spanish impacts may have caused ecosystemic
disequilibrium remains unclear, and they will commonly have
represented part of a continuum in the process of landscape
change and alteration. The account of extant literature on
the transformation of prehispanic landscapes, in highly
populated areas of Mesoamerica and the Andes, suggests that
the introduced, so called Spanish land-use system was
rather a hybrid one, since it retained elements of the
prehispanic systems (Whitmore and Turner 1992; Butzer
1995). Thus, by this hybridization we may expect the
possibility that the impact of introduced biota and land
use forms could have been less harmful to some areas of the
continent where domestication of the landscape took place
in pre-Hispanic times.

Given the variety of regions and aspects of the
study of land degradation, the search for an answer to the
question of prehistoric and historic environmental change
involves a variety of research methods. One potential
method to study land degradation is by high-technology
limnological research, such as implemented by O'Hara et
al.(1993) as part of a much larger project. Highly
detailed study of lake cores can provide a minute,

quantitative record of changing processes and parameters
5
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governing sedimentation, but its interpretation in terms of
changing land use and specific environmental modification
in the watershed must then be inferred.

The alternative approach put forward in this study
is to focus directly on the landscape, combining
traditional methods such as historical geography and
geomorphology into a more directed geoarchaeological
approach. Thus, land-use change, agricultural
technologies, demography, soils and alluvial histories are
examined. Specific objectives were set for each line of
work, that are subsequently integrated to allow an
assessment of regional and temporal change for a set of
interrelated variables.

There have been countless studies of either such
historical-archaeological components or earth science
phenomena, with similar goals in mind; yet without a
balance of inputs from both approaches, and their tight
integration, such efforts do not yield a comprehensive
understanding of complex landscape change. In effect, I am
arquing for a much more refined and focused geographical
approach to a four-dimensional diagnosis of regional
landscapes and their transformation, that effectively
integrates the human elements with their biophysical

counterparts.
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To give some examples, there have been many generic
studies of soil erosion in central Mexico (Cook 1949, 1963;
Kirkby 1972; Klaus and Lauer 1983; Garcia-Cook 1986; Werner
1986), but these have lacked the specificity to provide
temporal controls, or to link eroded soil products with
their soil landscapes, or to identify the land use
practices coeval with such erosion.

Recently, Frederick (1995) retrieved
palecenvironmental information from alluvial sequences of
rivers of the northern Mesoamerican frontier. This study
shed light on the possibilities in Mexico to use fluvial
stratigraphic records to identify changes on past
landscapes, whether they are the result of climatic
fluctuations or human disturbance. There have also been
studies dealing with archaeological reconstruction of
settlement patterns (Sanders et al. 1979; Parsons 1971;
Niederberger 1987) or archival reconstruction of Late
Aztec-Early Spanish settlements (Charlton, 1969), Spanish
land-holdings (Prem 1978, 1992; Licate 1981) and
environmental deterioration by land use changes (Melville
1991, 1994), or a combination of documentary information
and archaeological remains (Doolittle 1988) that contribute
enormously to an understanding of land use or resources;

but these studies are limited to either the Prehispanic or
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Colonial period, and provide little insight on
environmental impacts.

To address the problems initially raised on the
issue of landscape modification, it was necessary to devise
a methodology that treats both periods, pre-Hispanic and
post-Conquest, and both human and biophysical phenomena, by
using consistent criteria for the same region. Such an
"integrative" methodology was intended to initially yield
only qualitative understanding, but a detailed web of
qualitative inductive understanding significantly
complemented those deductive inferences drawn from local
studies, e.g., limnological interpretations based on single
cores within a vertical approach only.

With respect to the issue of soil erosion, the two
original hypotheses tested in this study considered that
(1) soil erosion was triggered during the century preceding
the Spanish Conquest, as a consequence of rapid
agricultural intensification promoted by the Aztec state,
and that later was controlled through terracing, and that
(2) the abandonment of terraced Aztec fields and the
introduction of new forms of land use at the end of the
sixteenth century led to an unchecked process of soil
erosion that partially contributed to the flooding in the
valleys. Later, as research went on, I found that there

was no apparent erosion datable to the Aztec period, for

8
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what I discarded the first hypothesis. However, the second
hypothesis proved correct, since geomorphological,
stratigraphic and documentary evidence indicated that
severe erosion did occur in the Early Colonial period as a
result of abandonment of lands on slopes and the lack of
terrace maintenance.

What came to modify the first hypothesis was that
there were at least two major phases of erosion and
alluviation prior to the Aztec occupation, around the end
of the first millennium B.C., and one between 500 and 1100
AD. The former was due to the rapid increase in land
clearance and agricultural intensification, and the second
due to abandonment and probably mismanagement of the land.
This last statement, rather than a final result, I believe,
is a new hypothesis, inasmuch as the erosional phases are
still to be pinpointed in time under more detailed study at
semi-mesoscale and mesoscale.

Following this introductory note, the main body of
the dissertation is divided into three parts:

(a) basic information on the study area, methods

and chronology of settlement (Chapters 2 to 4);
(b) the results and discussion of the two most

relevant problems, soil erosion on the piedmont

(Chapter 5), and alluviation in the valleys

(Chapter 6), and the two minor complementary
9
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problems: a suggestive reconstruction of
vegetation change from the palynological
perspective and the array of modern plant
communities (Chapter 7), and the dynamics of
lake fluctuations and settlement (Chapter 8);
(¢) the modeling of landscape transformation
processes and the discussion of research
problems in the context of ancient cultural and
physical landscapes, stressing on the
significance of settlement patterning and land
use (Chapter 9).
Ten appendices contain lists of data gathered
through this research. Further, a glossary at the end of
the text contains all the Spanish and Nahuatl words written

in italics through the text.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

SETTING

Location and general aspects of the region

The region of Texcoco is situated in the eastern
piedmont of the Basin of Mexico, approximately 30 km east
of Mexico City, below the western slope of the Sierra
Nevada (Figure 2.1). The area extends from 19° 37' N, on
the north, to 19° 20' N, on the south, and from 98° 58' W,
on the west, to 98° 43' W, on the east.

The highest elevations are the summits of two major
volcanoes, Tlaloc (4120 m), and Telapon (4060 m), and the
lowest is the bed of lake Texcoco (2240 m). The landscape
of the study area can be divided into six ecological zones:
mountain, hills, upper and lower piedmont, alluvial plain,
and lake bed. Each of these units show a distinctive
mosaic of soils and land use, and consequently a particular
evolution of settlement patterns (Figure 2.2). A brief
description of the landscape elements is given below as
background to the main research problems of this

dissertation.

11
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Figure 2.1 Ecological zones. M, mountains; H, hills; UP,
upper piedmont; LP, lower piedmont; AP,
Alluvial plains; and LC, Lacustrine plain.

The trace of profiles A, B, and C of figure
2.2 are also indicated.

12
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Geology, geomorphology, and soils

The ecological units considered in this work are
governed by the distribution of the major landform units
resulting from a series of tectonic and volcanic processes
that in the Tertiary and Quaternary formed the basin of
Mexico (Mooser 1975), and their concomitant modeling by
exogenic processes. A detailed description of the
relationship geology-topography-soil for each ecological

units is given below.

Mountains

The most prominent volcanic structures of Quaternary
origin are the Telapon and Tlaloc volcanoces, which in turn
stand on the volcanic structures of Pliocene age known as
Sierra Nevada, comprised essentially of andesitic and
dacitic lavas and tuff deposits (Mooser 1975, map).

The Quaternary deposits of the Sierra Nevada consist
of dacitic lavas and pyroclasts with large amounts of
pumice, that all together form the Tlaloc Formation of
Middle to Late Pleistocene age (Vdzquez-Sanchez and Jaimes-
Palomera, 1989). None of these deposits have been dated,
except for a a deposit of nuée ardente in the Rio Frio Pass

that was derived in the Telapon; a piece of wood embedded

15
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in the deposit yielded an age older than 35,000 BP
(Cornwall 1969, 1970). However, more recent pyroclastic
deposits as young as middle Holocene have also been
reported in several parts of the slopes of the mountains
and the piedmont. Overlying the Pleistocene deposit
described above, there are several ashfall deposits. By
relative chronology Cornwall (op.cit.) identified one of
these ashes as the pumice with andesite of Tlapacoya dated
14,700+280, and that in turn is overlain by a deposit of
fine ash upon which the present soil has formed. It is
likely that the overlying ash is Holocene. On the western
slope of the Sierra Nevada there is a white ash-fall
deposit that in this research was dated to middle Holocene
times between 3,933+156 and 5,313+51 B.P.; this date
indicates that this ash is likely to be the "Pémez
Marcadora Superior" reported by Mooser (1967) or the “Pomez
de Grano Fino” (PGF) reported by Lambert (1986). Two dates
in Tlapacoya bracket this ash between 4,250+110 and 4,880
BP (Lambert:1986:78; Flores Diaz, 1986: 114). Although
geochemical analyses testify for the same ash in between
the deposits dated, it has not been compared with the PGF
samples from the deposits originally described. Therefore,
the name PGF is used through this work as a tentative

assignation. Probably because of their disperse character,
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these Holocene deposits have not been grouped into a
formation, or into a minor lithostratigraphic unit.

The deep valleys dividing blocks of lava are the
result of modeling by water and ice, since evidence of
glaciation is conspicuous (Heine, 1975). The predominant
high slopes and the young materials are a limitation to
soil development; the main orders of soils are entisols and

inceptisols, and large areas of rocky surface.

The same Tertiary volcanic units that form the base
of the high volcanoes, extend from the main core of the
Sierra Nevada giving rise to the low volcanic hills in the
north (Sierra de Patlachique) and the center (La
Purificacién) (Mooser, 1975; VAazquez-Sanchez and Jaimes-
Palomera, 1989).

The Sierra de Patlachique is a structure that runs
east-west and consists of a Tertiary dacitic dome and
various ash deposits with differential degree of
consolidation, and various deposits of Early Pleistocene
age that include fenobasaltic lavas and tuffs, part of the
the El Pino Formation (Vazquez-Sanchez and Jaimes-Palomera,
1989). There is a large variety of soils that correspond
to the different lithologies, slopes, differential erosion,

and land use patterns. The most common orders of soils are
17
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inceptisols and entisols, in general sandy loam on the
upper horizons and loam or clay loam in the lower horizons
(Cachon, Nery, and Cuanaloc 1974)

The volcanic structure of La Purificacién, a few
kilometers east of Texcoco, is an amphitheater-like
structure, whose concave part faces west. It has been
interpreted by Mooser (1975, map) as an old caldera rim
with a composition basically of dacitic lavas and breccias.
Due to its pronounced slopes, soils are thin and most of
the structure has stony soils. At the base of the
structure there is a considerable mantle of colluvial
accumulation that enables the formation of sandy loam
soils. In spite of the highly inclined slopes, artificial
terracing along the middle and lower parts of the structure
have made cultivation possible.

The low hills in the south, in the area of
Chimalhuacan, consist of a series of small volcanic cones
and structures ranging in age from Pliocene to Late
Pleistocene (Mooser 1975; Vdzquez-S&nchez and Jaimes-~
Palomera 1989). Two main structures make up this subunit,
one to east corresponding to a cluster of three hills:
Cerro Portezuelo, Cerro El Pino and Cerro Tecolote,
separated from the Cerro de Chimalhuacan to the west by a
saddle crossed by the road that connects the town of Los

Reyes with Texcoco. The volcanic activity that formed
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these units is associated with part of the Sierra de Santa
Catarina and Cerro de la Estrella in Ixtapalapa, and their
deposits are grouped into El Pino Formation of Early to
Middle Pleistocene age (Vazquez-Sanchez and Jaimes-
Palomera, 1989). There is a variety of soils most of which
are young, showing poor development of horizons; in most
cases soils are dark-brown sandy loam of colluvial origin
(Cachon et al., 1974). Most soils in this area overlie
calcic horizons with platy structures at the bottom of the
profile, probably corresponding with the so-called
Horizonte Barrilacoc in the traditional stratigraphy of the
Basin of Mexico, established originally by Bryan (1948).
These soils seem to be developed on young colluvial mantles

that cover an old petrocalcic horizon.

Upper and lower piedmonts

These two landform units are described together as
their origins are related to the same geomorphic processes.
The two piedmonts are the result of continuous deposition
of pyroclastic deposits, interbedded with a few lava flows
and fluvial accumulations. This combination of deposits
overlies the Tertiary lavas and breccias that form the core
of the Mountains and Hills described above. There are no
dates for the deposits forming the piedmonts, but they have

been mapped as Tarango Formation (Mooser 1975, map;
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Vazquez-Sanchez and Jaimes-Palomera 1989 ), whose tentative
age is Pliocene. However, in a recent stratigraphic study
of these deposits in the Basin of Mexico, Mooser et al.
(1986) have considered that the pyroclastics of the so-
called Tarango Formation are mostly of Pleistocene age. As
shown in the more detailed stratigraphic description in
this research, it is evident that the uppermost layer of
ash is Holocene, which includes the aforementioned PGF ash.
A close analysis to the different exposures also
reveals also long periods of quiescence between volcanic
events represented by well developed soils, and periods of
strong erosion represented by stratigraphic unconformities.
It is also evident that a change probably in base level led
to two generations of deposits, so that the pyroclastic
deposits of the piedmont can be divided into two members.
One of them forms the upper piedmont and consists of
discontinuous deposits of pyroclastic flows and ashes that
are indurated, showing also paleosols. The other member
forms the lower piedmont, and is made of a series of
coalescing volcanic fans formed by thick deposits of
lahars, showing at least continuos accumulations; these
deposits are younger or at least contemporaneous with the
youngest deposits of the upper piedmont. The
geomorphologic and stratigraphic relations between the two

members suggest that the youngest lahars that form the
20
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lower piedmont flowed through the wvalleys that dissected
the upper piedmont pyroclastics and were ejected onto the
plains. Discrete terraces of pink lahar are found along
some barrancas as is the case of the area studied in detail
in Chapter 5.

In a general sense, the upper piedmont is made of
the older indurated ashes of the Tarango Formation, and the
lower piedmont is made of the younger coalescing lahar
fans. This difference is what impose their
characteristics in terms substrate and soil development
which also have an indirect impact on use patterns, soil
formation and susceptibility of soils to erosion (see
profiles of Figure 2.2).

The older pyroclastic deposists of the upper
piedmont are indurated in the form a hard material known
locally as tepetate, a Nahuatl word that means 'rock mat',
which corresponds to what the Soil Survey Staff (1992)
defines as duripan. Because of the high impermeability,
due to cementation, and clay horizons, these deposits are
highly susceptible to erosion as pointed out in several
areasof central Mexico (Schonals 1977). Continuous
erosional episodes resulted in the predominance of badland
type of landscapes of large barren surfaces, nowadays
mostly reforested. The younger deposits of the lower

piedmont consist of gravel and sand deposits that are not
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cemented, except for a petrocalcic horizon on top of the
deposits, known as caliche. However, the sandy and sandy
loam characteristics of these soils create good conditions
for infiltration and reduction of surface runoff, which
consequently has effects in the relatively low erodibility
of the lower piedmont that contrasts with the high
erodibility of those soils in the upper piedmont.

There are apparently several origins of the tepetate
in the piedmonts of Texcoco. Although tepetate is in part
the result of the welding of ashes at the time of
deposition, as observed in some of the units, it is in
large part the result of pedogenic induration (Nimlos and
Ortiz-Solorio 1987; Dubreucq et al. 1989). Silica, as a
cementing agent, is alsopresent in the low horizons in the
soils of the upper piedmont, whereas calcium carbonate
takes over as a cementing agent in the lower soil horizons
in the lower piedmont (Dubreucq et al. 1989) . However, a
micromorphological study of tepetates in central Mexico,
focusing on the Texcocan piedmonts, shows that the process
of induration consists of calcitic accretion independent
from clay illuviation and pedogenic silica, and that the
presence of silica is due to abundant volcanic glass shards
and phytoliths (Fedoroff et al. 1994:471). This study shows
also that calcitic accretion not only contributes to

induration of tepetates by cementation, but to the
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formation of a laminar crust which gives the tepetates
their impermeability. Experimental research on the
hydrology and sediment budget of several small watersheds
in the piedmonts shows that runoff on the tepetates after a
rain shower is about 90% of the total volume of rain,
whereas in the areas still covered with soils it is only
12% (Quantin et al. 1993: 42). This tremendous difference
makes the soil to get saturated more quickly, so that the
excess of water will run downslope on the tepetate which
acts as an internal level of subsurface flow, causing
sliding that eventually triggers gully formation (Bocco,
1993). Since the calcitic film protects the tepetate, the
overlying, unconsolidated soil is removed by runoff. More
details of this process in a particular case is discussed
in Chapter 5.

Soil development in the piedmonts varies
considerably. Most of the soils are developed on colluvial
deposits and pyroclastic materials. 1In the upper piedmont,
soils show a better profile development where Bt horizons
are present, although continuous accumulation of volcanic
ash or colluvial material buried the horizons creating a
new superimposed soil, very much in the form of cumulic
soils, haplustolls being the most common type registered
through this investigation. Soil development in the lower

piedmont is weaker, although a Bk horizon is in most cases
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present. The formation of this horizon is an independent
process since the calcic horizons seem to be older, much in
a way of an inherited horizon. Most of the soil profiles
observed on the lower piedmont are entisols usually within
the group of ustipsamments, although mollisols of the group
of haplustolls are not uncommon.

Deep incision affects primarily the upper piedmont
in a wide pattern, showing a different orders of gullies.
The lower piedmont presents dissection in a more
concentrated pattern, usually form of deep gullies
corresponding to the main stream courses. Incision starts
along fractures in the pyroclastic deposits and continues
to reach the Tertiary lava flows of the basement, then
expands headwards developing a network of gullies of
variable depth. These gullies, whcih can reach up to 60
meters in depth, are called barrancas, a term that is
widely used in volcanic areas of central Mexico, and that
has now been included in the geomorphological lexicon

(Whittow, 1984).

Alluvial plain

The alluvial plain consists of a series of
coalescing floodplains and older alluvial surfaces; their
stratigraphy includes basically thick sedimentary deposits

resulting from the continuous accumulation of silts, sands,
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gravel and occasionally volcanic flows. Although fluvial
and volcanic deposits of Pleistocene age are important,
accumulation in the Holocene has been significant,
especially in the last 3,000 years. There is no stream
incision in the floodplain except in a very few reaches of
rivers at the interface lower piedmont-alluvial plain,
where accumulation is more massive and outspread in the
form of alluvial fans. Farther downstream the gradient is
so low that river courses meander and migrate, sometimes
changing paths in the process of avulsion. A detailed
description of recent river behavior and sedimentation is
provided in Chapter 6.

Floodplains have a convex form, usually presenting
ridges at the present channel of at places where there used
to be a channel. Most settlements are located on the
edges, and usually lie on artificial mounds of an older
settlement. This aspect of mound buildup concomitant with
fluvial aggradation is explained through different
stratigraphic sections in Chapter 6. Although most flood
deposits are relatively recent, at present, these rivers
have been channelized and high artificial levees prevent
the alluvial plains from flooding. Nonetheless small flood
events are not uncommon.

Soil profiles in the alluvial plain vary according

to the age of the parent material. Cachon et al. (1974)
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have identified well developed profiles with a B horizon in
higher places of the alluvial plain where recent
aggradation has not occurred. However, in most cases soils
are classified in the suborder of fluvents, where usually
there is a cumulic sequence of weak A and AC horizons. Soil
texture on the plain also varies horizontally, being silty
loam and clay loam in the distal part of the flood plain,
and sandy loam near the channel. The variability of
texture also varies from basin to basin. For instance, in
the north, on the floodplains of the San Juan Teotihuacan
and Papalotla rivers, there is a predominance of fine
sediments, usually silts; in the central part of the
region, around the area of Texcoco, and the plains just
west of Huexotla and Coatlinchan, soils are sandy, due to
the high influx of sands from the lahar deposits of the
lower piedmont; and in the south, the Arroyo Coxtitlan and
Coatepec river floodplains show a combination of coarse and

fine textures, since there is influence of some pyroclastic

and colluvial deposits.

Lacustrine plain

The lacustrine plain is the surface that used to
contain the waters of Lake Texcoco, that today is a surface
with seasonal ponds, salt flats, halophyte grasses, coppice

dunes and a few cultivated areas on the edges. The
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stratigraphy of the lake bed includes a continuous sequence
of silts and clay deposits interbedded with volcanic ash
layers. The high content of clay and the continuous
extraction of underground water has led to a continuous
cracking and subsidence of the surface, especially in the
area west of Chicoloapan (Lugo et al. 1992).

The intense eolian activity on the now-exposed
lakebed has created coppice dunes, which are made largely
of clay aggregates and pumice (See Chapter 8).

Given the characteristics of the substrate and the
hydrological dynamics, soils present several problems of
drainage, high pH, and high salinity. For this reason most
of the surface is not used for agriculture, except in those
areas along the edges where irrigation has made possible
the down-washing of salts in the profile. Most recently,
the appearance of colonias settlements is taking place in
several areas. The central part of the lake basin is a
protected area run by the Comisién del Lago de Texcoco, a
governmental organization engaged in the creation of the
artificial lake (Lake Nabor Carrillo) and the protection of

the fauna within the reserved area.

Climate and hydroloqy

The climate of the Texcoco region is characterized

by mild winters and wet, moderate summers; the climatic

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



types of the study area according to the Kdppen
classification vary from BS (semi-arid) on the plains to Cw
(temperate with summer precipitation) on the piedmonts and
mountains (Table 2.1). Located in the rain shadow of the
Sierra Nevada, annual rainfall decreases from 900 mm or
more on the mountains to 600 mm on the semiarid plains
(Garcia 1988). More than a 90% of the precipitation

falls in the late spring and summer. This seasonal pattern
of rains is the result of the northern migration of the
Intertropical Convergence Zone (ITCZ) that creates
instability in the air and consequently convectional rains
between May and October, and the influence of tropical
cyclones from the Pacific and the Gulf of Mexico towards
the end of the summer. The summer rains in particular are
thunderstorms that usually take place in the afternoon or
at night. The amount of precipitation registered in January
or February (known locally as cabafluelas), sometimes in the
form of snow on the mountains, is the result of cold fronts
that rarely reach this part of Mexico. While in some years
frontal rains can be abundant and continuous over several
weeks, in others are completely absent.

Temperatures across the study area are moderately seasonal
and tend to be isothermal (the difference between the

maximum and minimum monthly is less than 5°C), a condition
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TABLE 2.1
LIST OF BASIC CLIMATIC INFORMATION AND CLIMATE TYPES ACCORDING
TO KOEPPEN MODIFIED BY GARCIA (1988).

e
Station Lat./ T P WP T O Modified Kdppen
and eleva- Long. (°C) (mm) (%) (°C) classification
tion
Alluvial
plain:

Atenco 19°33* 15.1 604.6 4.9 6.5 Cb(wo)(wW)(i')g
(2253 m) 98°55 "

Texcoco 19°31*' 15.9 691.5 3.7 6.1 Cb(wl)(w)(i')g
(2253 m) 98°53"

Chapingo 19°29' 15.2 636.5 4.3 6.0 Cb(wl)(w){(i')g
(2250 m) 98°53"

La Grande 19°34' 14.7 620.5 4.3 6.5 Cb(w0)(w)(i')
(2300 m) 98°54 "

Lower

piedmont:

Tepexpan 19°37' 15.6 587.8 4.7 6.4 BSlkw(w)(i')g
(2400 m) 98°57"

San Miguel 19°32' 14.7 621.0 5.2 5.2 Cb(w0)(i')g
Tlaixpan 98°49"

(2300 m)

Upper

piedmont:

Coatepec 19°23°* 15.7 637.1 5.4 5.3 Cb(w0)(i')g
(2400 m) 98°51 "

Mountains:

Rio Frio 19°20' 10.4 1074.3 3.6 4.0 Cb'(w2)(w)igw"
(3000 m) 98°40"

Notes:

T= mean annual temperature, P= mean annual precipitation, WP=
pwinter precipitation, TO= temperature oscillation (difference
between the highest 1 temperature and the lowest).

Source: Garcia, E. (1988).

that becomes more pronounced at higher elevations (Table

2.1).
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Differences in day and night temperatures tend to be
more pronounced during the dry season than in the rainy
season. The reason for such pornounced differences in the
dry season is because of the low dew point and the
relatively low humidity in the air. Frosts occur commonly
in the area from late September to early May, which is the
time with less humidity in the air and low incidence of
clouds. Frosts are more frequent on the alluvial plain and
lower piedmont, due to the thermal inversion of the air
masses that results in the lowering of cold layers of air
onto the ground surface, a frequent phenomenon in the Basin
of Mexico. Cultivated areas at higher elevations, on hill
slopes, are paradoxically less prone to the damage of
frosts, because the rugged topography or because of the
terraced slopes that create the air turbulence that hinder
the formation of layers of cold air. Frosts are highly
detrimental to crops, especially the early ones (September-
October) which affect fertilization in corn and destroy the
developing pods in beans, and the late ones (April -May)
which affect the flowering process in some fruit trees,
i.e. peach (Contreras-Arias and Baldovinos, 1954: 22, 34).
The high intensity of rains is another meteorological
phenomenon that has detrimental effects on agriculture,

because they are a significant factor in the erosivity of
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soils. The summer rain showers are recognized as having a
high erosive power, especially upon the susceptible soils
of the piedmont, due in particular to the large size of the
drops and their intensity (Figueroa-~Sandoval, 1975). The
most critical time of soil removal by intense precipitation
is the beginning of the rainy season when soils are not
saturated, so that unbound particles are easily removed by
splash and overland flow, as demonstrated in experimental
work in central Mexico (Palacio-Prieto and Vdzquez-Selem
1990).

Prolonged rains, locally called 